np. to:
https://dev.mysql.com/doc/refman/5.0/en/ful...l-language.htmlCytat
Such a technique works best with large collections (in fact, it was carefully tuned this way). For very small tables, word distribution does not adequately reflect their semantic value, and this model may sometimes produce bizarre results. For example, although the word “MySQL” is present in every row of the articles table shown earlier, a search for the word produces no results:
mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('MySQL');
Empty set (0.00 sec)
The search result is empty because the word “MySQL” is present in at least 50% of the rows. As such, it is effectively treated as a stopword. For large data sets, this is the most desirable behavior: A natural language query should not return every second row from a 1GB table. For small data sets, it may be less desirable.